Ovariektomize Rattus Norvegicus’un Proksimal Kortikal Epifiz Kemiğinin Morfolojisi
PDF
Atıf
Paylaş
Talep
P: 169-174
Aralık 2020

Ovariektomize Rattus Norvegicus’un Proksimal Kortikal Epifiz Kemiğinin Morfolojisi

Turk J Osteoporos 2020;26(3):169-174
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 15.05.2019
Kabul Tarihi: 17.11.2020
Yayın Tarihi: 28.12.2020
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Osteoporoz tüm yaşlardaki kadın ve erkek bireyleri etkileyebilir. Bu çalışmanın amacı ovariektomi (OVX) proksimal kortikal epifiz kemiğinin morfolojisini, ovariektomize edilmiş sıçan modellerinde taramalı elektron mikroskobu (SEM) ve transmisyon elektron mikroskobu (TEM) kullanarak analiz etmektir.

Gereç ve Yöntem:

Analiz edilen kemikler ovariektomize Rattus norvegicus dişi sıçanlardan alınan kortikal femur kemikleriydi. OVX’in beşinci, yedinci ve dokuzuncu haftada devam etmesinden bu yana üçüncü haftadan itibaren karakterizasyon yapıldı. Analiz, TEM yapısından elde edilen kemik çukurunun ve nanoyapı seviyesinin şeklini ve yoğunluğunu analiz etmek için SEM görüntülerinden elde edilen 100 μm büyütmeli mikroyapı seviyesi olan iki yapı seviyesine odaklanıyordu - TEM görüntülerinden elde edilen 50 nm’lik bir büyütme ile nanoyapı seviyesinin analiz edilmesi - kemik analizi apatit kristalleri.

Bulgular:

Mikroyapı düzeyinde, OVX’ten bu yana 9 haftalık sıçanlarda ortaya çıkan boşluğun kontrol grubuna (OVX olmayan) kıyasla %68,9 arttığı tespit edildi. Nanoyapı düzeyinde, plaka, tablet ve örtüşen apatit kristallerinin hem OVX olmayan hem de OVX sıçanlarında mevcut olduğu anlaşılmaktadır. Bununla birlikte, ovariektomize edilmiş sıçanlar grubunda, apatit kristallerinin tablet boyutunun düşme eğilimi vardı.

Sonuç:

Rattus norvegicus beyaz sıçanlarının dişileri OVX’ten bu yana 9. haftada morfolojiye ve oyukların yüzdesine dayanan osteoporoz koşulları göstermiştir. OVX ayrıca apatit kristallerinin boyutunu da düşürdü.

References

1
Ling-Ling E, Xu W, Feng L, Liu Y, Cai D, We N, et al. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Int J Mol Med 2016;37:1475-86.
2
Sharma D, Larriera AI, Palacio-Mancheno PE, Gatti V, Fritton JC, Bromage TG, et al. The effects of estrogen deficiency on cortical bone microporosity and mineralization. Bone 2018;110:1-10.
3
Jiang L, Zhang W, Wei L, Zhou Q, Yang G, Qian N, et al. Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats. Biomaterials 2018;179:15-28.
4
Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, et al. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 2017;97:135-87.
5
Leticia SS, Rochette NF, Pedrosa DF, Magnago RPL, Filho TBF, Vieira FLH, et al. Role of APOE gene in bone mineral density and incidence of bone fractures in brazilian postmenopausal women. J Clin Densitom 2018;22:227-35.
6
Fang J, Yang L, Zhang R, Zhu X, Wang P. Are there differences between Sprague-Dawley and Wistar rats in long-term effects of ovariectomy as a model for postmenopausal osteoporosis?. Int J Clin Exp Pathol 2015;8:1491-502.
7
Laurent MR. Role of estrogens and androgens in osteoporosis. Ref Module in Biomed Sci 2019;4:233-45.
8
Rossini M, Lello S, Sblendorio I, Viapiana O, Fracassi E, Adami S, et al. Profile of bazedoxifene/conjugated estrogens for the treatment of estrogen deficiency symptoms and osteoporosis in women at risk of fracture. Drug Des Devel Ther 2013;22:601-10.
9
Dasarathy JMD, Labrador H. Bone Health in Women. Prim Care 2018;45:643-57.
10
Balla B, Sarvari M, Kosa JP, Kocsis-Deák B, Tobiás B, Árvai K, et al. Long-term selective estrogen receptor-beta agonist treatment modulates gene expression in bone and bone marrow of ovariectomized rats. The J of Ster Biochem and Mol Bio 2019;188:185-94.
11
Marcucci G, Brandi ML. Rare causes of osteoporosis. Clin Cases Miner Bone Metab 2015;12:151-6.
12
Trajanoska K, Rivadeneira F. The genetic architecture of osteoporosis and fracture risk. Bone 2019;126:2-10.
13
Edwards BJ. Osteoporosis Risk Calculators. J Clin Densitom 2017;20:379-88.
14
Zammel N, Amri N, Chaabane R, Rebai T, Badraoui R. Proficiencies of Zingiber officinale against spine curve and vertebral damage induced by corticosteroid therapy associated with gonadal hormone deficiency in a rat model of osteoporosis. Biomed Pharmaco 2018;103:1429-35.
15
Wu JC, Strickland CD, Chambers JS. Wrist Fractures and Osteoporosis. Orthop Clin North Am 2019;50:211-21.
16
Rastogi A, Cross S, Gademsetty C, Ramachandran M, Ahmad M, Jalan R. Imaging of the hip and groin. Orthop Trauma 2014;28:256-75.
17
Hamed E, Lee Y, Jasiuk I. Multiscale modeling of elastic properties of cortical bone. Acta Mech 2010;213:131-54.
18
Hamed E,Jasiuk I, Yoo A, Lee YH, Liszka T. Multi-scale modelling of elastic moduli of trabecular bone. J R Soc Interface 2012;9:1654-73.
19
Rubin MA, Jasiuk I. The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 2005;36:653-64.
20
Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, et al. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. Mater Sci Eng C 2017;79:930-49.
21
Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 2003;33:270-82.
22
Kim JK, Kwon YE, Lee SG, Jeong JM, Kim JG, Kim YJ. Comparative SEM and TEM analyses of apatite phases prepared by a multi-sample loading device. Materi Characteriz 2018;135:1-7.
23
Mulyaningsih NN, Juwono AJ, Soejoko DS, Astuti DA. Analysis of nano Ca3(PO4)2on bone’s calcium deficiency at peak age. In: IOP Conf. Series: Earth and Environmental Science, The 4thInternational Seminar on Sciences. Baranangsiang, Bogor, Indonesia: Bogor Agricultural University 2018;187:1-7.
24
Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury 2016;47:11-20.
25
Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ. Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 2001;19:1027-34.
26
Rubin MA, Rubin J, Jasiuk I. SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone. Bone 2004;35:11-20.
27
Dumont M, Kostka A, Sander PM, Borbely A, Kaysser-Pyzalla A. Size and size distribution of apatite crystals in sauropod fossil bones. Palaeo 2011;310:108-16.
28
Turunen MJ, Kaspersen JD, Olsson U, Guizar-Sicairos M, Bech M, Schaff F, et al. Bone mineral crystal size and organization vary across mature rat bone cortex. J Struct Biol 2016;195:337-44.
29
Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, et al. Characterization of the trabecular rat bone mineral: effect of ovariectomy and biphosphonate treatment. Bone 2000;26:341-8.
30
Fratzl F, Vogl G, Eschberger J, Koller K, Groschner M, Plenk H, et al. Mineral crystals in calcified tissues: A comparative study by SAXS. J Bone Miner Res 2009;7:329-34.
31
ShunsukeY, Mary CW, Suhaib B, Timothy CC, Cecilia MG. Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice. Biochem. Biophys Res Commun 2018;495:553-9.
32
Ferrari S, Reginster JY, Brandi ML, Kanis JA, Devogelaer JP, Kaufman JM, et al. Unmet needs and current and future approaches for osteoporotic patients at high risk of hip fracture. Arch Osteoporos 2016;11:37.
33
Keaveny TM, Hayes WC. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 1993;115:534-42.
34
Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 2010;375:1729-36.
35
Gong H, Zhang M, Yeung HY, Qin L. Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 2005;23:174-80.
36
Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology 2015;276:526-35.
37
Mbarki M, Sharrock P, Fiallo M, ElFeki H. Hydroxyapatite bioceramic with large porosity. Materials Sci and Engineering C 2017;76:985-90.
38
Sharma D, Ciani C, Marin PA, Levy JD, Doty SB, Fritton SP. Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone 2012;51:488-97.
39
Bagambisa FB, Joos U, Schilli W. A scanning electron microscope study of the ultrastructural organization of bone mineral. Cell Mater 1993;3:93-102.
40
Mansilla J, Moreno-Castilla C, Bosch P, Alemán I, Pijoan C, Botella M. On porosity of archeological bones II. textural characterization of mesoamerican human bones. Palaeogeogr Palaeoclimatol Palaeoecol 2014;414:493-9.
41
Rollo JMDA, Boffa RS, Cesar R, Schwab DC, Leivas TP. Assessment of trabecular bones microarchitectures and crystal structure of hydroxyapatite in bone osteoporosis with application of the rietveld method. Procedia Eng 2015;110:8-14.
42
Noor Z, Hidayat M, Taufik A, Sumitro S, Rahim AH. Assessment of microarchitecture and crystal structure of hydroxyapatite in osteoporosis. Univ Med 2011;30:29-35.
2024 ©️ Galenos Publishing House